
+Model
M

A

t
i
f
S
o
e
u
w
a
r
©

K

1

p
t
u
T
a
a
h
o

s

0

ARTICLE IN PRESSATCOM-3832; No. of Pages 17

Available online at www.sciencedirect.com

Mathematics and Computers in Simulation xxx (2012) xxx–xxx

Original article

Optimized FPGA design, verification and implementation of a
neuro-fuzzy controller for PMSM drives

Hsin-Hung Chou a, Ying-Shieh Kung b,∗, Nguyen Vu Quynh b, Stone Cheng a

a Department of Mechanical Engineering, National Chiao-Tung University, 1001 University Road, East District, Hsinchu City 300, Taiwan, ROC
b Department of Electrical Engineering, Southern Taiwan University, 1 Nan-Tai Street, Yong-Kang District, Tainan City 710, Taiwan, ROC

Received 24 October 2011; received in revised form 22 June 2012; accepted 23 July 2012

bstract

The work presents a neural fuzzy controller (NFC) for speed loop of permanent synchronous motor (PMSM) drives based on
he technology of field programmable gate array (FPGA). Firstly, a mathematic model of the PMSM drive is derived; then to
ncrease the performance of the PMSM drive system, a fuzzy controller (FC) which its parameters are adjusted by a radial basis
unction neural network (RBF NN) is applied to the speed controller for coping with the effect of the system dynamic uncertainty.
econdly, very high speed IC hardware description language (VHDL) is adopted to describe the behavior of the speed controller
f PMSM drives which includes the circuits of space vector pulse width modulation (SVPWM), coordinate transformation, NFC,
tc. Besides, to reduce the resource usage while implementing in field programmable gate array (FPGA), a sequential execution
sing finite state machine (FSM) is applied. Thirdly, based on electronic design automation (EDA) simulator link, a simulation
ork is constructed by MATLAB/Simulink and ModelSim co-simulation mode which the PMSM, inverter and speed command

re performed in Simulink as well as the speed controller of PMSM drives is executed in ModelSim. Finally, some co-simulation
esults validate the effectiveness of the proposed NFC-based speed controller for PMSM drives.

 2012 IMACS. Published by Elsevier B.V. All rights reserved.

eywords: PMSM; Neural fuzzy control; VHDL; FPGA; ModelSim; Finite state machine; Simulink; Co-simulation

. Introduction

PMSM has been increasingly used in many automation control fields as actuators, due to its advantages of superior
ower density, high-performance motion control with fast speed and better accuracy. But in industrial applications,
here are many uncertainties, such as system parameter uncertainty, external load disturbance, friction force, and
nmodeled uncertainty, which always diminish the performance quality of the pre-design of the motor driving system.
o cope with this problem, in recent years, many intelligent control techniques [1,5,7,11,17], such as fuzzy control,
daptive PID control, neural networks control, adaptive fuzzy control and other control method, have been developed
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

nd applied to the speed control of servo motor drives to obtain high operating performance. Although fuzzy control
as been successfully applied in several industrial automation, however, it is not an easy task to obtain an optimal set
f fuzzy membership functions and rules in FC. In this paper, a neural fuzzy controller (NFC) is proposed which RBF

∗ Corresponding author.
E-mail addresses: carin6969@itri.org.tw (H.-H. Chou), kung@mail.stut.edu.tw (Y.-S. Kung), vuquynh@lhu.edu.vn (N. Vu Quynh),

tonecheng@mail.nctu.edu.tw (S. Cheng).

378-4754/$36.00 © 2012 IMACS. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.matcom.2012.07.012

dx.doi.org/10.1016/j.matcom.2012.07.012
http://www.sciencedirect.com/science/journal/03784754
dx.doi.org/10.1016/j.matcom.2012.07.012
mailto:carin6969@itri.org.tw
mailto:kung@mail.stut.edu.tw
mailto:vuquynh@lhu.edu.vn
mailto:stonecheng@mail.nctu.edu.tw
dx.doi.org/10.1016/j.matcom.2012.07.012

+Model
 ARTICLE IN PRESSMATCOM-3832; No. of Pages 17

2 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx

NN is firstly used to real-time identify the plant dynamic (Jacobian transformation term: (∂ωr/∂i
∗
q)) and provided more

accuracy plant information; then based on the gradient descent method and the real-time identified plant information,
parameters of FC can be tuned to a near-optimal condition.

In implementation, although the execution of NFC requires many computations, FPGA can provide a solution in
this issue. Especially, FPGA with programmable hard-wired feature, fast computation ability, shorter design cycle,
embedding processor, low power consumption and higher density is very suitable for the implementation of the
digital system [14–16]. Although the digital signal processor (DSP) is another solution to provide a flexible skill in
the intelligent control technique, it suffers from a long period of development and exhausts many resources of the
CPU [18]. However, FPGA implementation of a RBF NN has been developed in literatures [2,6]. Brassai et al. [2]
applied the RBF NN in the area of robotics and control. The computations of neurons in hidden layer of RBF NN and
weight adaption module adopt typical parallel implementation on FPGA. In addition, table look up method is used to
develop the activation function. Kim et al. [6] firstly develop a floating-point processor on FPGA. Then based on this
floating-point processor, a microprogram is written to implement the RBF NN with on-line learning back-propagation
algorithm. The Taylor series is considered to compute the Gaussian function. However, a floating-point processor
consumes FPGA resources and the executing speed might be slow. Further, in the hardware realization of an intelligent
control algorithm, except the parallel processing method, the sequential execution method is alternative. The former
method with continuous and simultaneous operation has the advantage of fast computation ability, but consumes much
more FPGA resources. The latter method separates the overall computation with several steps and the resources with
same function in each step will be common use; therefore it can greatly save much FPGA resources. In this paper,
a method mixed with parallel processing and sequential execution is adopted to compute the NFC algorithm. Except
that the computation of neurons in the hidden layer of RBF NN is applied by the parallel processing method, others
computation, such as the Gaussian function, weight adaption module and Jacobian function in RBF NN as well as
the fuzzy control algorithm are all presented by the sequential execution method. Although the sequential execution
method needs to spend more computation time, it does not loss any control performance due to the fast computation
power in FPGA. In this paper, finite state machine (FSM), which behavior is easy to describe by VHDL, is applied to
model the computation process of sequential execution method.

Recently, a co-simulation work by electronic design automation (EDA) simulator link has been gradually applied to
verify the effectiveness of the Verilog and VHDL code in the motor drive system [3,4,8–10]. The EDA simulator link
[12] provides a co-simulation interface between MALTAB or Simulink and HDL simulators-ModelSim [13]. Using
it you can verify a VHDL, Verilog, or mixed-language implementation against your Simulink model or MATLAB
algorithm [12]. Therefore, EDA simulator link lets you use MATLAB code and Simulink models as a test bench that
generates stimulus for an HDL simulation and analyzes the simulation’s response [12]. In this paper, a co-simulation
by EDA simulator link is applied. The PMSM, inverter and speed command are performed in Simulink and the NFC-
based speed controller described by VHDL code is executed in ModelSim. Finally, some simulations results validate
the effectiveness of the proposed NFC-based speed controller of PMSM drives.

2. System description of PMSM drive and speed controller design

The simulation architecture of NFC-based speed control for PMSM drive is shown in Fig. 1. The modeling of
PMSM and the algorithm of the neural fuzzy controller are introduced as follows.

2.1. Mathematical model of PMSM

The typical mathematical model of a PMSM is described, in two-axis d–q synchronous rotating reference frame,
as follows

did = − Rs
id + ωe

Lq
iq + 1

vd (1)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

dt Ld Ld Ld

diq

dt
= −ωe

Ld

Lq

id − Rs

Lq

iq − ωe

λf

Lq

+ 1

Lq

vq (2)

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 3

w
L
l

c
a

w

w
t

2

r

2

a

w
i

Fig. 1. The simulation architecture of NFC-based speed control for PMSM drive.

here vd and vq are the d and q axis voltages; id and iq, are the d and q axis currents; Rs is the phase winding resistance;
d and Lq are the d and q axis inductance; ωe is the rotating speed of magnet flux; and λf is the permanent magnet flux

inkage.
The current loop control of PMSM drive in Fig. 1 is based on a vector control approach. That is, if the id is

ontrolled to 0 in Fig. 1, the PMSM will be decoupled and controlling a PMSM like to control a DC motor. Therefore,
fter decoupling, the torque of PMSM can be written as the following equation,

Te = 3P

4
λf iq� Ktiq (3)

ith

Kt = 3P

4
λf (4)

Considering the mechanical load, the overall dynamic equation of PMSM drive system is obtained by

Jm

d

dt
ωr + Bmωr = Te − TL (5)

here Te is the motor torque, Kt is torque constant, Jm is the inertial value, Bm is damping ratio, TL is the external
orque, and ωr is rotor speed.

.2. Design of neural fuzzy controller (NFC)

The dash rectangular area in Fig. 1 presents the architecture of an NFC for the PMSM drive. It consists of a FC, a
eference model and a RBF NN based parameter adjusting mechanism. Detailed description of these is as follows.

.2.1. Fuzzy controller (FC)
The FC in this study uses singleton fuzzifier, triangular membership function, product-inference rule and central

verage defuzzifier method. In Fig. 1, the tracking error e and the error change de are defined by

e(k) = ωm(k) − ωr(k) (6)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

de(k) = e(k) − e(k − 1) (7)

here uf represents the output of the FC and ωm is the output of reference model. The design procedure of FC algorithm
s as follows. Firstly, the linguist value of E and dE are {A0, A1, A2, A3, A4, A5, A6} and {B0, B1, B2, B3, B4, B5, B6},

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

4 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx

c00

dE

1
A0 A1 A2 A3 A4 A5 A6

0
e

E

de
de

μ(e)

μ (
de

) 1

μA3(e)

μA4(e)=1- μA3(e)

μ B
1(

de
)

μ B
2(

de
)=

1-
μ

B
1(

de
)

0

Fuz zy Rule Table

Input of e (f or i=3)

In
p

u
t

o
f

de
 (

fo
r j

=1
)

A0 A1 A2 A3 A4 A5 A6

c01 c02 c03 c04 c05 c06

c10 c11 c12 c13 c14 c15 c16

c20 c21 c22 c23 c24 c25 c26

c30 c31 c32 c33 c34 c35 c36

c40 c41 c42 c43 c44 c45 c46

c50 c51 c52 c53 c54 c55 c56

c60 c61 c62 c63 c64 c65 c66

B0

B1

B2

B3

B4

B5

B6

B 0
B 1

B 2
B 3

B 4
B 5

B 6

e

de
3
de
2
de
1

-d
e 3

-d
e 2

-d
e 1

e3e2e1-e1-e2-e3
Fig. 2. The symmetrical triangular membership function of e and de and fuzzy rule table.

respectively. Each linguist value of E and dE is based on the symmetrical triangular membership function, which is
shown in Fig. 2. Secondly, the computation of the membership degree for e and de are done. Fig. 2 shows that the only
two linguistic values are excited (resulting in a non-zero membership) in any input value, and the membership degree
is obtained by

μAi (e) = ei+1 − e

ei+1 − ei

and μAi+1 (e) = 1 − μAi (e) (8)

Similar results can be obtained in computing the membership degree μBj (de). Thirdly, the selection of the initial
FC rules refers to the dynamic response characteristics, such as,

IF e is Ai and �e is Bj THEN uf is cj,i, (9)

where i and j are from 0 to 6, Ai and Bj are fuzzy numbers, and cj,i is the real number. Finally, to construct the fuzzy
system uf(e, de), the singleton fuzzifier, product-inference rule, and central average defuzzifier method is adopted.
Although there are total 49 fuzzy rules in Fig. 2 will be inferred, actually only 4 fuzzy rules can be effectively excited
to generate a non-zero output. Therefore, if an error e is located between ei and ei+1, and an error change de is located
between dej and dej+1, only four linguistic values Ai, Ai+1, Bj, Bj+1 and corresponding consequent values cj,i, cj+1,i,
cj,i+1, cj+1,i+1 can be excited, and the output of the fuzzy system can be inferred by the following expression:

uf (e, de) =
∑i+1

n=i

∑j+1
m=jcm,n[μAn (e) × μBm (de)]∑i+1

n=i

∑j+1
m=jμAn (e) × μBm (de)

�

i+1∑
n=i

j+1∑
m=j

cm,n × dn,m (10)

where dn,m� μAn (e) × μBm (de). And those cm,n are adjustable parameters. In addition, by using (8), it is straightforward

to obtain
∑i+1

n=i

∑j+1
m=jdn,m = 1 in (10).
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

2.2.2. Radial basis function neural network (RBF NN)
The RBF NN adopted here is a three-layer architecture which is shown in Fig. 3 and comprised of one input layer,

one hidden layer and one output layer.

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 5

Σ

)(* kiq

)1(−krω

)2(−krω

rbfω

1w

2w

1h

pw

2h

ph

)(krω

nne +

-

F
f

w
r
t

w

A

w
d

2

Input l ayer Hidden la yer Output la yer

Fig. 3. The architecture of RBF NN.

The RBF NN has three inputs by i∗q(k), ωr(k − 1), ωr(k − 2) and its vector form is represented by

X = [i∗q(k), ωr(k − 1), ωr(k − 2)]T (11)

urthermore, the multivariate Gaussian function is used as the activated function in hidden layer of RBF NN, and its
ormulation is shown as follows.

hr = exp

(
−||X − cr||2

2σ2
r

)
, r = 1, 2, 3, 4, . . . p (12)

here cr = [cr1, cr2, cr3]T, p is the number of neuron in hidden layer, σr denotes the node center and node variance of
th neuron, and ||X − cr|| is the norm value which is measured by the inputs and the node center at each neuron. And
he network output in Fig. 3 can be written as

ωrbf =
p∑

r=1

wrhr (13)

here ωrbf is the output value; wr and hr are the weight and output of rth neuron, respectively.
The instantaneous cost function is defined as follows.

J = 1

2
(ωrbf − ωr)

2�
1

2
e2
nn (14)

ccording to the gradient descent method, the learning algorithm of weights, node center and variance are as follows:

wr(k + 1) = wr(k) + ηenn(k)hr(k) (15)

crs(k + 1) = crs(k) + ηenn(k)wr(k)hr(k)
Xs(k) − crs(k)

σ2
r (k)

(16)

σr(k + 1) = σr(k) + ηenn(k)wr(k)hr(k)
||X(k) − cr(k)||2

σ3
r (k)

(17)

here r = 1,2,. . .p, s = 1, 2, 3 and η is a learning rate. Further, the (∂ωr/∂i
∗
q) is Jacobian transformation and can be

erived from Fig. 3 and (12)

∂ωr

∂i∗q
≈ ∂ωrbf

∂i∗q
=

p∑
r=1

wrhr

cr1 − i∗q(k)

σ2
r

(18)

.2.3. Reference model (RM)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

Second order system as follows is usually considered as the RM in the adaptive control system

ωm(s)

ω∗
r (s)

= ω2
n

s2 + 2ςωns + ω2
n

(19)

dx.doi.org/10.1016/j.matcom.2012.07.012

+Model
 ARTICLE IN PRESSMATCOM-3832; No. of Pages 17

6 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx

where ωn is natural frequency and ς is damping ratio. Furthermore, applying the bilinear transformation, (19) can be
transformed to a discrete model by

ωm(z−1)

ω∗
r (z−1)

= θ0 + θ1z
−1 + θ2z

−2

1 + φ1z−1 + φ2z−2 (20)

and the difference equation is written as.

ωm(k) = −φ1ωm(k − 1) − φ2ωm(k − 2) + θ0ω
∗
r (k) + θ1ω

∗
r (k − 1) + θ2ω

∗
r (k − 2) (21)

2.2.4. Adjusting mechanism of FC
The gradient descent method is used to derive the NFC learning law in Fig. 1. The adjusting mechanism of FC

parameters is to minimize the square error between the rotor speed and the output of the reference model. The
instantaneous cost function is firstly defined by

Je �
1

2
e2 = 1

2
(ωm − ωr)

2 (22)

and the parameters of cm,n are adjusted according to

�cm,n ∝ − ∂Je

∂cm,n

= −α
∂Je

∂cm,n

(23)

where α represents learning rate. Secondly, the chain rule is used, and the partial differential equation for Je in (22)
can be written as

∂Je

∂cm,n

= −e
∂ωr

∂uf

∂uf

∂cm,n

(24)

Further, from (10) and using the Jacobian formulation from (18), we can, respectively, get

∂uf (k)

∂cm,n(k)
= dn,m (25)

and,

∂ωr

∂uf

≈ (KP + Ki)
∂ωrbf

∂i∗q
= (KP + Ki)

p∑
r=1

wrhr

cr1 − i∗q(k)

σ2
r

(26)

Therefore, substituting (25) and (26) into (24), the parameters cm,n of fuzzy controller described in (10) can be adjusted
by the following expression.

�cm,n(k) = αe(k)(Kp + Ki)dn,m

p∑
r=1

wrhr

cr1 − i∗q(k)

σ2
r

(27)

with m = j, j + 1 and n = i, i + 1.

3. Design of FPGA-based speed controller for PMSM drive

The internal architecture of the proposed FPGA-based speed controller for PMSM drive is shown in Fig. 4. The
inputs of this controller are speed command ω∗

r , rotor speed ωr, flux angle θe, measured three-phase currents (ia,
ib, ic), and the output is PWM command. The speed controller mainly includes a NFC-based speed controller, a
current controller and coordinate transformation (CCCT), a SVPWM generation, frequency divider, etc. The sampling
frequency of current and speed control is designed with 16 kHz and 2 kHz, respectively. The input clock is 50 MHz and
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

the frequency divider generates 50 MHz (Clk) and 12.5 MHz (Clk-step) clock to supply all modules of the FPGA-based
speed controller. All modules in Fig. 4 are described by VHDL and simulated in ModelSim. The FPGA resource usages
of CCCT, SVPWM and NFC controller in Fig. 4, with the example of Altera – Cyclone EP2C70, need 647 LEs (logic
elements) and 196,608 RAM bits, 1200 LEs and 0 RAM bit, 13,806 LEs and 0 RAM bit, respectively. The circuit

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 7

Clk

[11 ..0]

[11 ..0]

Frequency

divider
CK

PWM 1
PWM 2
PWM 3
PWM 4
PWM 5
PWM 6

FPGA-Based Speed Controller

Current controll ers

and coordinate

transform ation

(CCCT)

eθ

[11..0]
*
qi

[11..0]

ai
bi

[11..0]ci

Clk

NFC

controll er

Clk

Clk-step

*
rω [15..0]

Clk-s tep

[15..0]rω

Model Sim

Clk-step

SVPW M

generation

[11..0]

[11 ..0]

[11..0]1refv

2refv

3refv

Clk

Clk-sp

d
N

3

o
a

T
s
c
t
h
m
5
m
S
a
i

Fig. 4. Internal circuit of the proposed FPGA-based speed controller for PMSM drive.

esigns of CCCT and SVPWM refer to [7]. The following paragraphs focus on the description of circuit design in
FC with detail.

.1. Finite state machine (FSM) method

To reduce the use of the hardware resource, finite state machine (FSM) is adopted to model the computing process
f algorithm. Herein, the computation of the sum of product (SOP) shown below is taken as an example to present the
dvantage of FSM.

Y = a1 × x1 + a2 × x2 + a3 × x3 (28)

wo kinds of design method are presented to realize the computation of SOP. There are parallel processing method and
equential execution method. Parallel processing with the designed SOP circuit is shown in Fig. 5(a), which will operate
ontinuously and simultaneously. The SOP circuit requires 2 adders, 3 multipliers, and merely near one clock time
o complete the overall computation. With the advantage of fast computation ability, the parallel processing method,
owever, consumes much more FPGA resources. To solve this problem, a sequential execution method using FMS to
odel SOP circuit is adopted and shown in Fig. 5(b). The FSM method uses one adder, one multiplier and manipulates

 steps (or 5 clocks time) machine to carry out the overall computation of SOP. Compared to parallel processing
ethod, the FSM method requires more operation time (if one clock time is 80 ns, 5 clocks needs 0.4 �s) in executing
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

OP circuit; nevertheless, it does not loss any computation power. As a result, the more complicated computation in
lgorithm, the more FPGA resources will be saved by applying FSM method. Besides, the state diagram in Fig. 5(a)
s easy to be described by VHDL.

x

x

x

1a
1x

2a
2x
3a
3x

+

+ y

xx

xx

xx

1a
1x

2a
2x
3a
3x

++

++ y

x

x

+

x

+

s0 s1 s2 s3 s4

1x

2x
3x

1a

2a

3a

y

x

x

+

x

+

s0 s1 s2 s3 s4

1x

2x
3x

1a

2a

3a

y

(b) (a)

Fig. 5. Computation of SOP by using (a) parallel operation and (b) sequential execution method using FMS.

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

8 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx

x

s2 s3

r

12a

+

11a

x

s4 s5

r

+

10a

x

s6 s7

r

+

9a

x

s8 s9

r

+

8a

x

s10 s11

r

+

7a

x

s12

r

x
1y

+

5a

x

r

+

4a

x

r

+

3a

x

r

+

2a

x

r

+

1a

x

r

+

0a

1y

r

SL(4)
rh

u 4≥u SR(2)

Y

N

+

6a

0=rh

s0 s1
s14 s15 s16 s17
s18 s19

s20 s21
s22 s23 s24 s25 s26

s13 s27

Fig. 6. State diagram of an FSM for describing the exponential function.

3.2. Behavior description of exponential function

According to the architecture of hidden layer in RBF NN in (12), it needs to compute the exponential function and
is defined as follows

hr = exp

(
−||X − cr||2

2σ2
r

)
� exp(−u) (29)

To simplify the computation, the input of exponential function is limited within 0–4 because if u ≥ 4 the output
hr ≤ exp(− 4) = 0.0183 will approximate to zero, otherwise if 0 ≤ u < 4, (29) can be computed by using Taylor expansion
series.

hr = exp(−u) =
∝∑

n=0

(−1)n
un

n!
≈

12∑
n=0

(−1)n
un

n!
(30)

The 12th order is selected in (30). To normalize the input value, we define (r = u/4) and to avoid the numerical overflow
condition during computation, (30) is divided by 16. Therefore, (30) becomes

hr = 16
exp(−4r)

16
≈ 16

12∑
n=0

(−1)n
4n−2rn

n!
� 16

12∑
n=0

anr
n (31)

where an�(−1)n(4n−2/n!) by a0 = 0.00625, a1 = − 0.25, . . ., a12 = 0.00218909.
Sequential execution is herein adopted to evaluate the polynomial of degree twelve in (31), and we transfer the form

of (31) as follows for easy sequential computation.

hr = 16((((((((((((a12r + a11)r + a10)r + a9)r + a8)r + a7)r + a6)r + a5)r + a4)r + a3)r (32)

+ a2)r + a1)r + a0)

FSM is employed to model the polynomial form in (32) and it is shown in Fig. 6, which uses one adder, one multiplier,
one comparator and two shifters as well as manipulates 28 steps machine to carry out the overall computation. The
SR(2) and SL(4) in Fig. 6 represent right shift with 2-bit and left shift with 4-bit, respectively. The multiplier and adder
apply Altera LPM (library parameterized modules) standard. The FSM can be easily described by VHDL. Moreover,
the operation of each step in Fig. 6 can be completed within 80 ns (12.5 MHz clock); therefore total 28 steps only need
2.24 �s operational times.
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

3.3. Behavior description of a neuron in RBF NN

After describing the behavior of exponential function, we further apply it in the behavior description of computing
a neuron in RBF NN. In each neuron in Fig. 3, it needs to perform the function of computing the mutivariate Gaussian

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 9

x+

+

+

1rc−

)k(i*q
2rc−

)k(r 1−ω

3rc−

)k(r 2−ω

x

x

1d

2d

3d

+

xrσ

÷÷
u

)exp(•

)1(SL

+
rh
x

rw

ro

÷÷1d− x rJ2
rσ

2
rσ

x
rh
η

xnne
lhe

+

rw

rw

x2
rσ

rσ

3
rσ

norm

norm ÷÷

3
rσ

xlhe

rw

lhew
x +

rσ

rσ

÷÷1d

2
rσ

x

lhew

+

1rc

1rc

÷÷2d

2
rσ

x

lhew

+

2rc

2rc

÷÷3d

2
rσ

x

lhew

+

3rc

3rc

s0 s1 s2 s3
s4 s5 s6~s33 s34

s35 s36 s37 s38

s39 s40 s41 s42
s43 s44

s45 s46
s47 s48 s49 s50 s51

Computation of norm value by t he inpu ts

and node centers

Outputs of RBF NN and Jacobian

at rth neuron

Update the weight

valu e

f
i
F
J
c
t
s
t
H
c
n
s
o
w

3

a
t
b
o

Update the variance Update the node center

Fig. 7. State diagram of an FSM for describing rth neuron computation in RBF NN.

unction in (12), individual network output in (13), individual Jacobian value in (18) and individual parameters learning
n (15)–(17). According to this requirements, FSM for describing rth neuron computation in RBF NN is presented in
ig. 7 which the inputs are i∗q(k), ωr(k − 1), ωr(k − 2) and outputs are Or (individual network output) and Jr (individual
acobian value). Further, in Fig. 7, steps s0–s5 execute the computation of norm value; steps s6–s35 describe the
omputation of exponential function and the outputs of individual network output and Jacobian value; steps s36–s38 are
he weight update; steps s39–s41 are the variance update and s42–s51 are the node center update. The operation of each
tep in Fig. 7 can be completed within 80 ns (12.5 MHz clock); therefore total 52 steps only need 4.16 �s operational
imes. In Fig. 7, except exponential function, the divider is also a complicated component in hardware implementation.
erein, we directly adopt Altera LPM standard to realize it. Fig. 8 shows a VHDL example to describe the divider

omputation of Y = A/B. The data format of two inputs A, B and one output Y all belong to the 16 bits, Q15 and signed
umber. The divider component adopts 32 bits operation with signed representation. The inputs A, B firstly need to
ign-extension to 32 bits, then sent to the divider component and obtain a 32 bits output of sat. Finally, the divider
utput of Y is extracted from 16th bit down to 1st of sat. The resource usage of a 32 bits divider component in Fig. 8,
ith the example of Altera – Cyclone EP2C70, needs 980 LEs.

.4. Behavior description of NFC

After describing the behavior of a neuron in RBF NN, we further apply it in the behavior description of computing
 NFC. In the proposed system, the number of neuron in hidden layer is chosen by three. The FSM employed to model
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

he NFC-based speed controller is shown in Fig. 9, which uses one adder, one multiplier, three neuron computational
locks (the detail for each one is shown in Fig. 7), some registers, etc. and manipulates 92 steps machine to carry out the
verall computation. The data types are designed with 16-bit length, two complements and Q15 format. The multiplier

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

10 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx

LIBRARY IEEE ;

USE IEEE. std_logic_ 116 4.all;

USE IEEE. std_logic_ ari th.all ;

USE IEEE.std_logic_ sign ed.all;

LIBRARY lpm;

USE lp m.LPM_COMPONENTS.ALL;

ENTITY Devider IS
port (clk,clk_D : IN STD_LOGIC;

A,B : I N STD_LOGIC_VE CTOR(15 do wnto 0);

Y : OUT STD_LOGIC_VE CTOR(15 do wnto 0));

END De vide r;

ARC HITECTURE Devide _arch OF Devider IS
SIGNAL dev ideA,devideB :STD_LOG IC_VECTOR(3 1 do wnto 0);

SIGNAL sat :STD_LOGI C_VECTOR(3 1 do wnt o 0);

SIGNAL CNT :STD_LOGI C_VE CTOR(7 downto 0) ;

BEGIN

m1: lp m_divide

GENERIC

MAP (L PM_WI DTHN=>32, LPM_WIDTHD= >32, LPM_PIPE LINE=>1,

LPM_NREP RES ENTATION=> "SI GNED", LPM_DREPRES ENTATION=> "SIGNED")

GEN: BLOC K

BEGIN

PROCESS (CLK_D)

BEGIN

IF clk_D'EVENT and clk_D= '1' THEN

CNT<=C NT+1;

IF CNT=X"00 " THEN

devideA<=A&X"0000 ";

IF B(1 5)='0' THEN

devideB< =X"0000"&B ;

ELSE

devideB<=X"FFF F"&B;

END IF ;

ELSIF CN T=X" 01" THEN

Y<= sat(16 downto 1) ;

CNT <= X"00";

END IF ;

END IF;

END PROCESS ;

END BL OCK GEN;

END Devide _arch;

PORT MAP (numer=>devideA,denom=>devideB,cl ock => clk,quotient=>s at);

Fig. 8. Example of divider computation using VHDL.

and adder apply Altera LPM standard. Although the algorithm of the NFC is high complexity, the FSM can give a
very adequate modeling and easily be described by VHDL. In Fig. 9, steps s0–s5 execute the computation of reference
model output; steps s6–s7 are for the computation of speed error and error change; steps s8–s12 execute the fuzzification
and look-up fuzzy table; s13–s21 are for the defuzzification; s22–s25 are the computation of current command; s26–s81
describe the computation of RBF NN and Jacobian value by using three parallel neuron computational block; finally
s82–s91 execute the tuning of fuzzy rule parameters. The operation of each step in Fig. 9 can be completed within 80 ns
(12.5 MHz clock); therefore total 92 steps only need 7.36 �s operational times. It does not loss any control performance
for the overall system because the operation time with 7.36 �s is less than the sampling interval, 500 �s (2 kHz), of the
speed control loop in Fig. 1. Finally, the execution time of NFC in software by using Nios II processor is evaluated and
it is 1190.8 �s. It shows that the computational power in hardware of FPGA is about 160 times faster than in software
by using Nios II processor.

4. Simulation results

The NFC-based speed control block diagram for PMSM drive is shown in Fig. 1 and its Simulink/ModelSim co-
simulation architecture is presented in Fig. 10. The SimPowerSystem blockset in the Simulink executes the PMSM
and the inverter. The EDA simulator link for ModelSim executes the co-simulation using VHDL code running in
ModelSim program with two works. The work-1 of ModelSim in Fig. 10 performs the function of speed loop neural
fuzzy controller (NFC) and the work-2 executes the function of current controller and coordinate transformation
(CCCT) and SVPWM. All works in ModelSim are described by VHDL. The sampling frequency of current and speed
control is designed with 16 kHz and 2 kHz, respectively. The clocks of 50 MHz and 12.5 MHz will supply all works
of ModelSim. The designed PMSM parameters used in simulation are that pole pairs is 4, stator phase resistance is
1.3 �, stator inductance is 6.3 mH, inertia is J = 0.000108 kg m2 and friction factor is F = 0.0013 N m s.

To evaluate the effectiveness of the proposed control algorithm, three tested cases with various PMSM parameters
are conducted, in which

Case 1: (normal-load condition)

J = 0.000108, F = 0.0013 (33)

Case II: (light-load condition)

J = 0.000108/3, F = 0.0013/3 (34)

Case III: (heavy-load condition)
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

J = 0.000108 × 3, F = 0.0013 × 3 (35)

The co-simulation is carried out in Fig. 10. The control objective is to control the rotor speed of PMSM to track the
output of the reference model. In the case of the FC design, the membership function and the fuzzy rule table are

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 11

d
w
i
i
a
d
w
a

Fig. 9. State diagram of an FSM for describing the NFC in speed loop controller of PMSM drive.

esigned in Fig. 11. Besides, the parameters of PI controller in Fig. 1 are selected as Kp = 1 and Ki = 0.025. Square
aves with period of 0.16 s and magnitude variation from 0 to 500 rpm up to 1000 to 1500 rpm is adopted as a tested

nput command. To evaluate the tracking performance of FC at various system conditions, the system parameters are
nitially designed at the normal-load condition (Case I), and the simulation result is shown in Fig. 12. It presents
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

 good speed following response in Fig. 12(a) and a complete current decoupled effect in Fig. 12(b). Therefore, a
esired rotor speed response with the characteristics of no overshoot, 0.017 s rising time and zero steady-state value,
hich approximates the speed response curve in Fig. 12(a), is considered as a comparator curve while PMSM runs

t different condition. However, when the system parameters change to the light-load (Case II) and heavy-load (Case

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

12 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx
Fig. 10. Simulink and ModelSim co-simulation architecture for NFC-based speed control of PMSM drive.

III) condition, the speed and current responses are shown in Figs. 13 and 14. The rotor speed response in Fig. 13 lags
behind the desired rotor speed response with a large overshoot condition and in Fig. 14 is ahead of the desired rotor
speed response with a small overshoot condition. It shows that the rotor speed response is greatly affected by system
parameters variation if the speed controller uses FC only.
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

To cope with the system uncertainty problem, a NFC is adopted in Fig. 1. The NFC consists of a FC, a RM and a
RBF NN based adjusting mechanism. The RBF NN is applied to real-time identify the plant dynamic for providing an
exact plant information to the learning algorithm of FC. The desired rotor speed response with the characteristics of no

Fig. 11. Fuzzy membership function and the initial fuzzy-rule table.

dx.doi.org/10.1016/j.matcom.2012.07.012

Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 13

Fig. 12. Simulation results when FC is used and PMSM is operated at normal-load condition.

Fig. 13. Simulation results when FC is used and PMSM is operated at heavy-load condition.

Fig. 14. Simulation results when FC is used and PMSM is operated at light-load condition.

dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

14 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx
Fig. 15. Simulation results when NFC is used and PMSM is operated at heavy-load condition.

overshoot, 0.017 s rising time and zero steady-state value in Fig. 12 is considered to design the transfer function of the
RM. According to the required specifications, a second order system with the natural frequency of 230 rad/s and the
damping ratio of 1 is chosen. Then, after applying the bilinear transformation with sampling frequency of 2 kHz, the
parameters of the difference equation in (21) are obtained by θ0 = 0.00295, θ1 = 0.0059, θ2 = 0.00295, φ1 = −1.7825,
and φ2 = 0.7943. In NFC design, the initial fuzzy parameters in Fig. 11 is the same as the FC, but the fuzzy parameters
of the cm,n can be tuned using (27) if the output of rotor speed cannot follow the output of RM. The learning rate α is set
as 0.3. The initial parameters in RBF NN are chosen by wr = 10, σr = 250, cr1 = cr2 = cr3 = 250, where r = 1, 2, 3. The
learning rate η in RBF NN is set as 0.15. In simulation, square waves with magnitude variation from 0 to 500 rpm up
to 1000 to 1500 rpm is adopted as a tested input command and its simulation results under heavy-load and light-load
condition are presented in Figs. 15 and 16, respectively. In Fig. 15, in the beginning time, the FC is applied to the
speed loop of PMSM drive system and the rotor speed shows a lag and an overshoot response. After 0.14 s, the NFC is
adopted. Meanwhile, the cm,n parameters are tuned to an adequate value for reducing the error between the rotor speed
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

and the output of RM. Finally, the rotor speed can accurately track well after one cycle learning. In Fig. 15(b), it exhibits
that the current iq need to generate a larger current value to force the motor running speed to fast track the output of
RM. Similar results appear in the light-load condition in Fig. 16. Additionally, two another transition conditions, which

Fig. 16. Simulation results when NFC is used and PMSM is operated at light-load condition.

dx.doi.org/10.1016/j.matcom.2012.07.012

Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

ARTICLE IN PRESS+Model
MATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 15

Fig. 17. Simulation results when NFC is used and PMSM is operated varying from normal-load condition to heavy-load condition.

Fig. 18. Simulation results when NFC is used and PMSM is operated varying from normal-load condition to light-load condition.

dx.doi.org/10.1016/j.matcom.2012.07.012

+Model

[

[

[
[
[

ARTICLE IN PRESSMATCOM-3832; No. of Pages 17

16 H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx

extern load is changed from normal-load to heavy-load and from normal-load to light-load condition, are considered
and evaluated, and the simulated results are shown in Figs. 17 and 18. In the former case, the control current iq in
transition conditions of Fig. 17(b) is apparently increased to speed up the motor running, but in the latter case, the
control current iq in transition conditions of 18(b) is decreased to slow down the motor running. However, it shows
that due to the tuning of control current iq by NFC, the output of rotor speed in Figs. 17(a) and 18(a) can track the
desired speed well. Therefore, the simulation results in Figs. 12–18 demonstrate that the proposed NFC-based speed
controller for PMSM drive is effective and robust.

5. Conclusions

This study has presented a FPGA-based NFC controller for PMSM drives and successfully demonstrated its per-
formance through co-simulation by using Simulink and ModelSim. In control algorithm, to cope with the system
uncertainty, a NFC is proposed and a RBF NN is used to identify the plant dynamic and provided more accuracy plant
information for parameters tuning of FC. In realization, a sequential execution using FSM is applied to model the
computing process of NFC for reducing the FPGA resource usage. Under the proposed design method, the execution
time and FPGA resource usage for computing a NFC spend only 7.36 �s and 13,806 LEs, respectively. It not only
does not loss any control performance for the overall system, but also can greatly save the FPGA resource usage.
At last, some simulation results demonstrate that in step response, the speed of PMSM can fast track the prescribed
dynamic response accurately after the proposed controller has been conducted. However, after confirming the effective
of VHDL code of NFC-based speed controller in co-simulation by using Simulink and ModelSim, the VHDL code
except A/D and QEP interface circuit, can be directly used in the experimental FPGA-based PMSM drive system for
further verifying its function in the future work.

Acknowledgment

This work was supported by National Science Council of the R.O.C. under grant no. NSC 100-2221-E-218-001.

References

[1] B.K. Bose, Expert system, fuzzy logic, and neural network applications in power electronics and motion control, Proceedings of the IEEE 82
(8) (1994) 1303–1323.

[2] S.T. Brassai, L. Bako, G. Pana, S. Dan, Neural control based on RBF network implemented on FPGA, in: Proceedings of the 11th International
Conference on Opimization of Electrical and Electronic Equipment, 2008, pp. 41–46.

[3] M.F. Castoldi, M.L. Aguiar, Simulation of DTC strategy in VHDL code for induction motor control, in: Proceedings of the IEEE International
Symposium on Industrial Electronics (ISIE), 2006, pp. 2248–2253.

[4] M.F. Castoldi, G.R.C. Dias, M.L. Aguiar, V.O. Roda, Chopper-controlled PMDC motor drive using VHDL code, in: Proceedings of the 5th
Southern Conference on Programmable Logic, 2009, pp. 209–212.

[5] J.W. Jung, Y.S. Choi, V.Q. Leu, H.H. Choi, Fuzzy PI-type current controllers for permanent magnet synchronous motors, IET Electric Power
Applications 5 (1) (2011) 143–152.

[6] J.S. Kim, S. Jung, Implementation of the RBF neural chip with the on-line learning back-propagation algorithm, in: Proceedings of the IEEE
International Joint Conference on Neural Networks (IJCNN 2008), 2008, pp. 337–383.

[7] Y.S. Kung, M.H. Tsai, FPGA-based speed control IC for PMSM drive with adaptive fuzzy control, IEEE Transactions on Power Electronics
22 (6) (2007) 2476–2486.

[8] Y.S. Kung, N. Vu Quynh, C.C. Huang, L.C. Huang, Simulink/ModelSim co-simulation of sensorless PMSM speed controller, in: Proceedings
of the 2011 IEEE Symposium on Industrial Electronics and Applications (ISIEA 2011), 2011, pp. 24–29.

[9] J. Lázaro, A. Astarloa, J. Arias, U. Bidarte, A. Zuloaga, Simulink/Modelsim simulable VHDL PID core for industrial SoPC multiaxis controllers,
in: Proceedings of the IEEE Industrial Electronics 32nd Annual Conference (IECON), 2006, pp. 3007–3011.

10] Y. Li, J. Huo, X. Li, J. Wen, Y. Wang, B. Shan, An open-loop Sin microstepping driver based on FPGA and the co-simulation of Modelsim and
Simulink, in: Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010,
pp. 223–227.

11] L. Lin, X. Peng, A PID neural network control for permanent magnet synchronous motor servo system, in: Proceedings of the 5th International
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

Conference on Computer Science and Education, 2010, pp. 1174–1178.
12] Mathworks, Matlab/Simulink Users Guide: Application Program Interface Guide, 2004.
13] Modeltech, ModelSim Reference Manual, 2004.
14] E. Monmasson, L. Idkhajine, M.W. Naouar, FPGA-based controllers, IEEE Industrial Electronics Magazine 5 (1) (2011) 14–26.

dx.doi.org/10.1016/j.matcom.2012.07.012

+Model
M

[

[

[

[

ARTICLE IN PRESSATCOM-3832; No. of Pages 17

H.-H. Chou et al. / Mathematics and Computers in Simulation xxx (2012) xxx–xxx 17

15] E. Monmasson, L. Idkhajine, M.N. Cirstea, I. Bahri, A. Tisan, M.W. Naouar, FPGAs in industrial control applications, IEEE Transactions on
Industrial Informatics 7 (2) (2011) 224–243.

16] S. Sanchez-Solano, A.J. Cabrera, I. Baturone, F.J. Moreno-Velo, M. Brox, FPGA Implementation of embedded fuzzy controllers for robotic
applications, IEEE Transactions on Industrial Electronics 5 (4) (2007) 1937–1945.
Please cite this article in press as: H.-H. Chou, et al. Optimized FPGA design, verification and implementation of a neuro-fuzzy
controller for PMSM drives, Math. Comput. Simul. (2012), http://dx.doi.org/10.1016/j.matcom.2012.07.012

17] M.G. Zhang, X.G. Wang, M.Q. Liu, Adaptive PID control based on RBF neural network identification, in: Proceedings of the 17th IEEE
International Conference on Tools with Artificial Intelligence, 2005, pp. 1854–1857.

18] Z. Zhou, T. Li, T. Takahahi, E. Ho, FPGA realization of a high-performance servo controller for PMSM, in: Proceedings of the 9th IEEE
Application Power Electronics Conference and Exposition, vol. 3, 2004, pp. 1604–1609.

dx.doi.org/10.1016/j.matcom.2012.07.012

	Optimized FPGA design, verification and implementation of a neuro-fuzzy controller for PMSM drives
	1 Introduction
	2 System description of PMSM drive and speed controller design
	2.1 Mathematical model of PMSM
	2.2 Design of neural fuzzy controller (NFC)
	2.2.1 Fuzzy controller (FC)
	2.2.2 Radial basis function neural network (RBF NN)
	2.2.3 Reference model (RM)
	2.2.4 Adjusting mechanism of FC

	3 Design of FPGA-based speed controller for PMSM drive
	3.1 Finite state machine (FSM) method
	3.2 Behavior description of exponential function
	3.3 Behavior description of a neuron in RBF NN
	3.4 Behavior description of NFC

	4 Simulation results
	5 Conclusions
	Acknowledgment
	References

